

#### **Reversible Reactions**

- Reactions are spontaneous if ∆G is negative.
- $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + energy$
- If  $\Delta G$  is positive the reaction happens in the opposite direction.
- $2H_2O(g)$  + energy  $\rightarrow 2H_2(g)$  +  $O_2(g)$
- $2H_2(g) + O_2(g) \implies 2H_2O(g) + energy$

### Equilibrium

#### $A + B \rightleftharpoons C + D$

- When I first put reactants together the forward reaction starts.
- Since there are no products there is no reverse reaction.
- As the forward reaction proceeds the reactants are used up so the forward reaction slows.
- The products build up, and the reverse reaction speeds up.

#### Equilibrium

- Eventually you reach a point where the reverse reaction is going as fast as the forward reaction.
- This is dynamic equilibrium.
- The rate of the forward reaction is equal to the rate of the reverse reaction.
- The concentration of products and reactants may not be the same, **but stay** constant, but the reactions are still routing.

#### Equilibrium

- Equilibrium position- how much product and reactant there are at equilibrium.
- Shown with the double arrow.
- \_\_\_\_\_ Reactants are favored
- Products are favored
- Catalysts speed up both the forward and reverse reactions so don't affect equilibrium position.

17

#### Measuring Equilibrium

- At equilibrium the concentrations of products and reactants are constant, NOT EQUAL.
- We can write a constant that will tell us where the equilibrium position is.
- K<sub>eq</sub> = equilibrium constant
- K<sub>eq</sub> = [Products]<sup>coefficients</sup> [Reactants]<sup>coefficients</sup>
- Square brackets [] means concentration
- in molarity (moles/liter)



#### Calculating Equilibrium

- K<sub>eq</sub> is the equilibrium constant, it is only effected by temperature.
- Only Aqueous ions and gases are included in the K<sub>eq</sub> expression.
   Write the equilibrium expression for the reaction: NH<sub>2</sub>OH<sub>(aq)</sub> + H<sub>2</sub>O<sub>(1)</sub> ↔ NH<sub>3</sub>OH<sup>+</sup><sub>(aq)</sub> + OH<sup>+</sup><sub>(aq)</sub>



## What Does $K_{eq}$ Tell Us? aA + bB $\Longrightarrow$ cC + dD

- $K_{eq} = [C]^{c} [D]^{d}$ [A]<sup>a</sup> [B]<sup>b</sup>
- If K<sub>eq</sub> > 1 Products are favored
- If K<sub>eq</sub> < 1 Reactants are favored

Keg Worksheets





#### **Changing Concentration**

- If you add reactants (or increase their concentration).
- The forward reaction will speed up.
- More product will form.
- Equilibrium "Shifts to the right"
  - $A + B \rightarrow C + D$

Stress of Adding Reactants. The equilibrium system will react against this, removing reactants by the formation of additional products through chemical reaction. The reaction will proceed to the right.

#### Changing Concentration

- If you add products (or increase their concentration).
- The reverse reaction will speed up.
- More reactant will form.
- Equilibrium "Shifts to the left"

$$A + B \leftarrow C + C$$

Stress of Adding Products. The equilibrium system will react against this, removing products by chemical reaction to form additional reactants. The reaction will proceed to the left (in reverse).

#### **Changing Concentration**

- If you remove products (or decrease their concentration).
- The forward reaction will speed up.
- More product will form.
- Equilibrium "Shifts to the right"

$$A + B \rightarrow C + D$$

Stress of Removing Products. The equilibrium system will react against this, removing reactants to form products by chemical reaction. The reaction will proceed to the right.

#### **Changing Concentration**

- If you remove reactants (or decrease their concentration).
- The reverse reaction will speed up.
- More reactant will form.
- Equilibrium "Shifts to the left".

#### $A + B \leftarrow C + D$

Stress of Removing Reactants. The equilibrium system will react against this, removing products by chemical reaction to form additional reactants. The reaction will proceed to the left (in reverse).

#### Changes in Pressure

- As the pressure increases the reaction will shift in the direction of the least gases.
- At high pressure, it's like increasing the "effective conc" of the side with the most moles of gas:





# Changes in Concentration & Pressure

- Changes in Concentration and Pressure cause the equilibrium to shift until equilibrium is reestablished.
- These changes DO NOT change the value of the Equilibrium Constant, K<sub>en</sub>



#### Changing Temperature

- Reactions either require or release heat.
- Change in Temperature shifts the equilibrium & changes the value of K<sub>eq</sub>.
- Endothermic reactions go faster at higher temperature.

How Come ??

Exothermic go faster at lower temperatures.

## Changing Temperature in an Endothermic Reaction

$$A + B + \mathbf{Q} \Leftrightarrow C + D$$

- Raising the temperature is analogous to increasing "Q" thus driving the endothermic reaction to the products side.
- K<sub>eq</sub> will increase

## Changing Temperature in an Exothermic Reaction

- A + B  $\Leftrightarrow$  C + D + Q • Raising the temperature increases "Q"
- thus driving the exothermic reaction to the reactants side.
- K<sub>eq</sub> will decrease



## Summary of Le Chatelier

- 3. An increase in temperature drives an exothermic reaction backwards to reactants.
- Keq is decreased
- 4. An increase in pressure drives a reaction from the higher moles of gas, towards the side with fewer moles of gas.
  - K<sub>eq</sub> does not change
- 5. Adding a catalyst does not alter the relative amounts of reactant and product. Forward reaction happens more easily and so does the reverse reaction. Equilibrium is only reached faster.

# Le Chatelier's Worksheets



### What is ICE?

aA + bB 🛁 cC + dD

- The ICE Method allows us to calculate the equilibrium concentration of each reactant & product in an equilibrium reaction
- Knowing the Equilibrium concentrations, we can calculate K<sub>eq</sub> for the same reaction

## What is ICE?

- What does ICE mean?
  - $I \rightarrow$  Initial conditions at experiment start
  - $C \rightarrow$  Change as system adjusts and reaches equilibrium
  - $E \rightarrow Equilibrium$

|    | Probably bi<br>3H <sub>20</sub>                                                                | etter explaine<br><sub>9)</sub> + N <sub>2(9)</sub>                                                                                                                  | $\begin{array}{c} \text{lained through a problem}\\ \begin{array}{c} 2(g) & \longrightarrow & 2NH_{3(g)} \end{array} \\ \text{an initial concentrations of}\\ 0.66M. The final concentration of e the equilibrium concentrations, \end{array} \\ \begin{array}{c} + & N_2(g) & \longrightarrow & 2NH_3(g) \end{array} \\ \begin{array}{c} + & N_2(g) & \longrightarrow & 2NH_3(g) \end{array} \\ \begin{array}{c} 0.66 & \text{(Given)} & 0 \end{array} \end{array}$ |                        |  |  |  |  |
|----|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| 1. | A solution pr<br>$[H_2] = 2.0 M$<br>$[NH_3] = 0.8 N$<br>and calculate<br><i>The Solution</i> ; | on prepared has an initial concentrations of .0 M and $[N_2] = 0.66M$ . The final concentration of 0.8 M. What are the equilibrium concentrations, culate $K_{eq}$ ? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |
|    |                                                                                                | 3H <sub>2</sub> (g) ·                                                                                                                                                | + N <sub>2</sub> (g) <del>⊂</del>                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≥ 2NH <sub>3</sub> (g) |  |  |  |  |
|    | Initial conc                                                                                   | 2 (Given)                                                                                                                                                            | 0.66 (Given)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                      |  |  |  |  |
|    | Change in conc                                                                                 | -3x                                                                                                                                                                  | -x                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + 2x                   |  |  |  |  |
|    | Eqm. Conc.                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8 (Given)            |  |  |  |  |
|    |                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |



## Probably better explained through a problem ...

1. A solution prepared has an initial concentration [NOCI] = 2.0 M, and an equilibrium concentration of [NO] = 0.66 M. What are the equilibrium concentrations, and calculate  $K_{eq}$ .

#### The Solution:

| Balanced Eqn<br>(given) | 2 NOCI 🔸  | → 2 NO +    | - Cl <sub>2</sub> |
|-------------------------|-----------|-------------|-------------------|
| Initial conc            | 2 (Given) | 0           | 0                 |
| Change in conc          | -2x       | + 2x        | + x               |
| Eqm. Conc.              |           | 0.66(Given) |                   |
| 5.1 ×                   |           |             |                   |



#### One more type ... I promise!

Given the equilibrium reaction:  $CO_{2(g)} + H_{2(g)} \leftrightarrow CO_{(g)} + H_2O_{(g)}$ , where  $K_{eq} = 0.26$ Before the reaction begins, the concentrations of  $CO_{2(g)}$  and  $H_{2(g)}$  are 0.3M. Determine the equilibrium concentrations of all reactants and products.

|                                       | Balanced Eqn<br>(given) | $\begin{array}{c c} red Eqn \\ ven \end{array}  CO_{2(g)} + H_{2(g)} \leftrightarrow CO_{(g)} \end{array} \cdot$ |         |     |     |  |  |
|---------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|---------|-----|-----|--|--|
|                                       | Initial conc            | 0.3M                                                                                                             | 0.3M    | 0   | 0   |  |  |
|                                       | Change in conc          | -x                                                                                                               | -x      | + x | + x |  |  |
|                                       | gm. Conc.               | 0.3 - x                                                                                                          | 0.3 - x | x   | x   |  |  |
| Answer: 0.3 – 0.10 = 0.2M 0.10M 0.10M |                         |                                                                                                                  |         |     |     |  |  |



## What is $K_{sp}$ ?

- It is used to quantitate solid substances that usually considered insoluble in water.
- For K<sub>sp</sub>, we will consider a saturated solution of the insoluble substance that is in contact with some undissolved solid.
- Important points to consider are:
   Some of the solid does dissolve. Not very much, but enough.
  - The substance dissociates upon dissolving.
- There exists an equilibrium between the
- undissolved solid and the solvated ions.

# What is K<sub>sp</sub>? - Some of the solid does dissolve.

- The substance dissociates upon dissolving. - There exists an equilibrium between the
- undissolved solid and the solvated ions.





## Write the $K_{sp}$ Expression for These 1) AIPO₄ 2) BaSO₄ 3) Sn(OH)<sub>2</sub> 4) $Cu_3(PO_4)_2$ 5) CuCN 6) AgBr 7) AgNO<sub>3</sub>

#### **Calculating Solubilities**

- Knowing the  ${\rm K}_{\rm sp},$  we can calculate the solubility of the substance

#### Here's an example;

- For the dissociation of Sn(OH)<sub>2</sub>:
- $\frac{Sn(OH)_{2(s)} <=> Sn^{2+}_{(aq)} + 2 OH^{-}_{(aq)}}{The K_{sp} expression is: K_{sp} = [Sn^{2+}] [OH^{-}]^{2}}$  The K<sub>sp</sub> for Sn(OH)<sub>2</sub> is 5.45 x 10<sup>-27</sup>
- Calculate the solubility of the Sn(OH)<sub>2</sub>?





- Calculate the solubility of Fe(OH)<sub>3</sub>
- The Ksp = 2.64 x 10<sup>-39</sup>

#### Answer:

- Fe(OH)<sub>3(s)</sub> <=> Fe<sup>3+</sup><sub>(aq)</sub> + 3 OH<sup>-</sup><sub>(aq)</sub>
  Ksp = [Fe<sup>3+</sup>] [OH<sup>-</sup>]<sup>3</sup>
  2.64 x 10<sup>-39</sup> = (x) (3x)<sup>3</sup>

- 27x<sup>4</sup> = 2.64 x 10<sup>-39</sup>
- x = 9.94 x 10<sup>-11</sup> M

#### One more ... a bit tougher ...

- Calculate the solubility of Ag<sub>3</sub>PO<sub>4.</sub>
- The Ksp = 8.88 x 10<sup>-17</sup>

#### Answer:

- $Ag_3PO_4 \ll 3 Ag^+ + PO_4^{3-}$   $Ksp = [Ag^+]^3 [PO_4^{3-}]$   $8.88 \times 10^{-17} = (3x)^3 (x)$   $27x^4 = 8.88 \times 10^{-17}$   $x = 4.26 \times 10^{-5} M$

- What are the concentrations of Ag<sup>+</sup> & PO<sub>4</sub><sup>3-</sup>?

27

Ag<sup>+</sup> = 3 x 4.26 x 10<sup>-5</sup> M
PO<sub>4</sub><sup>3-</sup> = 1 x 4.26 x 10<sup>-5</sup> M

The K<sub>sp</sub> Worksheet 17